Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury
نویسندگان
چکیده
Aldehyde dehydrogenase 2 (ALDH2) is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful model establishment, the agonist group was administered a daily consumption of 2.5% alcohol. At 7 days post-surgery, the Basso, Beattie, and Bresnahan score significantly increased in the agonist group compared with the spinal cord ischemia/reperfusion injury group. ALDH2 expression also significantly increased and the number of apoptotic cells significantly decreased in the agonist group than in the spinal cord ischemia/reperfusion injury group. Correlation analysis revealed that ALDH2 expression negatively correlated with the percentage of TUNEL-positive cells (r = -0.485, P < 0.01). In summary, increased ALDH2 expression protected the rat spinal cord against ischemia/reperfusion injury by inhibiting apoptosis.
منابع مشابه
Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury
Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successf...
متن کاملProtective effect of Crocus sativus L. (Saffron) extract on spinal cord ischemia-reperfusion injury in rats
Objective(s): Ischemia/reperfusion (I/R) injury of spinal cord is leading to the paraplegia observed. In this study, we investigated the protective effect of the saffron extract on spinal cord I/R injury. Materials and Methods: Thirty five male Sprague-Dawley rats were divided into 5 groups: intact, sham surgery, normal saline (NS), low dose saffron aqua extract, high dose saffron aqua extract....
متن کاملProtective effect of aqueous spinach (Spinacia oleracea L.) extract on spinal cord ischemia-reperfusion injury in rats
Operation on the thoraco-abdominal aorta may lead to paraplegia or paraparesis is after spinal ischemia/reperfusion (I/R) injury. In this study, we investigated the protective effect of the spinach extract on spinal cord I/R injury. Thirty-five male Sprague-Dawley rats were divided into five groups: Intact, sham surgery, normal saline (NS), low dose spinach extract (20 mg kg-1), high...
متن کاملIntrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function
BACKGROUND We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apoptosis. MATERIAL AND METHODS We observed the relationship between the activation of ERK1/2 in the ra...
متن کاملObestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms
Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...
متن کامل